

Solution of DPP #3 TARGET : JEE (ADVANCED) 2015 COURSE : VIJAY & VIJETA (ADR & ADP)

PHYSICS

1. Magnetic field due to one of the sheet

$$
B = \frac{\mu_0 K}{2}
$$
 Parallel to second sheet

Force on section of width b

$$
F = bK\ell \frac{\mu_0 K}{2}
$$

Force perunit area

$$
P = \frac{B}{\ell b} = \frac{\mu_0 K^2}{2}
$$

$$
P = 4\pi \times 10^{-7} \frac{1}{2\pi}
$$

2. Magnetic field due to circular current carrying loop on axis of loop is :
 $\mu_{\circ} = 2I\pi R^2$

B =
$$
\frac{\mu_0}{4\pi} \frac{2I\pi R^2}{(R^2 + x^2)^{3/2}}
$$
, I = Qf
\nB₁ + B₂ = 0
\n $\frac{Q_1 R^2}{(R^2 + R^2)^{3/2}} + \frac{Q_2 4R^2}{(4R^2 + R^2)^{3/2}} = 0$
\n $\frac{Q_1}{2\sqrt{2}} + \frac{Q_2 4}{5\sqrt{5}} = 0$
\n $\frac{Q_1}{Q_2} = -\frac{8\sqrt{2}}{5\sqrt{5}}$

3.

$$
dB = \frac{\mu_0 dt}{2\pi R} = \frac{\mu_0 \times \frac{\epsilon}{\ell} (\sigma_0 \cos \theta) R d\theta \times t}{2\pi R}
$$

$$
B = \int_0^{\pi/2} 2 dB \cos \theta = \frac{\mu_0 \sigma_0 \epsilon t}{4\ell}
$$

 4ℓ

4. No current passes through capacitors in steady state. Assume potential at point '4' to be zero.

Then points '1' and '2' are at same potential $\frac{2\mathsf{V}}{3}$.

Hence C_1 and C_2 can be taken in parallel.

The potential at point 3 is $\frac{V}{3}$.

 Equivalent circuit of all three capacitors is shown Hence potential difference across capacitor C₃ is
= $\frac{2C}{2C \cdot C} \times \left(\frac{2V}{2} - \frac{V}{2}\right) = \frac{2V}{2C}$ iree capa
across ca Fran three capacitors
ence across capacit
 $\frac{C}{2} \times \left(\frac{2V}{2} - \frac{V}{2}\right) = \frac{2V}{2}$

$$
= \frac{2C}{2C+C} \times \left(\frac{2V}{3} - \frac{V}{3}\right) = \frac{2V}{9}
$$

5. $P_{B_1 + B_2} = 30 \text{ W}$

$$
P_{B_3} = 60 \text{ W}, \qquad P_{B_4} = 60 \text{ W}
$$

$$
P_{B_5} = \frac{(200)^2}{400^2} = \frac{120}{4} = 30W
$$

$$
P_{\text{total}} = 180W
$$

\n- **6.** Since the cell gives out a power of 10W, a current 2A must flow through the cell towards left. ∴ Power consumed in 2Ω resistor =
$$
2^2 \times 2 = 8W
$$
\n- Total current flowing in 1Ω = 7Amp.
\n- ∴ Power consumed by 1Ω = $7^2 \times 1 = 49 W$
\n

7.

9.
$$
\tau = RC = \frac{3}{20} s
$$

voltage in capacitor rises to 63% of maximum value. $\frac{1}{10}$ – NC – $\frac{20}{20}$ s
voltage in capacitor i
0.63 = (1–e^{-t/-}) $\overline{}$ $0.63 = (1 - e^{-t/\tau})$ $t = 0.15$ s

- **10.** Potential on AB wire is 9V. Hence *ε* greater then 9v cannot be measured.
- **11.** (i) At $t > 0$

 $i' =$ current through dielectric

$$
= \frac{q}{C.R.} \qquad \qquad \dots (i)
$$

$$
= \frac{1}{C.R.} \qquad \dots(1)
$$

By K.V.L. $\varepsilon - iR - \frac{q}{C} = 0 \qquad \dots(2)$

$$
i = i' + \frac{dq}{dt} = \frac{q}{RC} + \frac{dq}{dt}
$$
...(3)

$$
I = I + \frac{dI}{dt} = \frac{dI}{RC} + \frac{dI}{dt}
$$
\n...(3)
\nBy (2) and $\epsilon - \left(\frac{q}{RC} + \frac{dq}{dt}\right)R - \frac{q}{C} = 0$
\n $\Rightarrow \epsilon C - 2q - RC \frac{dq}{dt} = 0$
\n $\Rightarrow \epsilon C - 2q = RC \frac{dq}{dt} \Rightarrow \int_{0}^{q} \frac{dq}{\epsilon C - 2q} = \int_{0}^{t} \frac{dt}{RC}$
\n $\Rightarrow -\frac{1}{2} \ln \frac{\epsilon C - 2q}{\epsilon C} = \frac{t}{RC} \Rightarrow q = \frac{\epsilon C}{2} \left(1 - e^{\frac{-2t}{RC}}\right)$
\n(ii) $q_{max} = \frac{\epsilon C}{2}$ as $t \rightarrow \infty$
\nand by (2) $\epsilon - iR - \frac{\epsilon}{2} = 0$

$$
\Rightarrow \qquad i = \frac{\varepsilon}{2R} \quad \text{at that time.}
$$

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Resonance **Website :** www.resonance.ac.in **| E-mail :** contact@resonance.ac.in **Toll Free :** ¹⁸⁰⁰ ²⁰⁰ ²²⁴⁴ [|] ¹⁸⁰⁰ ²⁵⁸ 5555| **CIN:** U80302RJ2007PTC024029 **PAGE NO.- ³**

 \backslash $\overline{}$

14. Magnetic field is non zero only in the region between the two solenoids , where B = μ_0 n₂i₂ energy stored per unit volume = $\frac{\mu_0}{2\mu_0} = \frac{\mu_0}{2\mu_0}$ 2 $2\mu_0$ – – B^2 $\mu_0 n_2^2$ \overline{a} $=\frac{\mu_0 \cdot \mu_2 \cdot \mu_2}{2}$ ∴ energy stored per unit volume = $\frac{B^2}{2\mu_0} = \frac{\mu_0 n_2^2 i_2^2}{2}$
The energy per unit length. = energy per unit volume × area of cross section where B ≠ 0

The energy per unit length. = energy per unit volume × area of cross section
\n
$$
= \frac{\mu_0 n_2^2 i_2^2}{2} [\pi (r_2^2 - r_1^2)]
$$
\n
$$
= \frac{\mu_0 n_1^2 i_1^2}{2} [\pi (r_2^2 - r_1^2), \text{ since } n_1 i_1 = n_2 i_2]
$$

15. $\varepsilon_1 = 300 \alpha$ $\varepsilon_1 = 300 \alpha$ (i)
 $-\varepsilon_2 + \varepsilon_1 = 100 \alpha$ (ii) $\varepsilon_1 = 300 \alpha$
- $\varepsilon_2 + \varepsilon_1 = 100 \alpha$
where, α is the potential gradient where, α

$$
\therefore \qquad \frac{\varepsilon_2}{\varepsilon_1} = \frac{2}{3}.
$$

17. Since electric field on plate at surface S_t is zero, net charge on left side of S_{\llcorner} is equal to net charge on right side of $\mathsf{S}_{\llcorner}.$ Further net charge between any two dotted surfaces (out of S_{L} , S_{M} and S_{D}) is zero from Gauss theorem. S_{M} and S_{R}) is zero from Gauss theorem.

: Charge on left most surface q_1 is equal to
charge on right most surface q_6 , that is, $q_1 = q_6$
Hence all statements are true.
 $\begin{array}{ccc}\n\vdots & \vdots & \vdots \\
\downarrow & \vd$

18. For given condition :

Magnitude of B_{solienoid} = Magnitude of B_{loop}

\n
$$
\mu_0 \text{ni} = \frac{\mu_0 I}{2R}
$$
\nhere n = $\frac{\text{Total no. of turn}}{\text{Total length}} = \frac{1300}{0.65}$

$$
i = \frac{I}{2R} \times \frac{1}{n} = \frac{8 \times 0.65}{2 \times 0.02 \times 1300} = 100 \text{ mA}.
$$

For given condition :

Total magnetic field at the centre of loop

$$
= |B_{loop}| + |B_{solenoid}|
$$

\n
$$
= 2|B_{loop}| = 2 \times \frac{\mu_0 I}{2D}
$$

\n
$$
= 2 \times \frac{\mu_0 I}{2D}
$$

$$
= 2|B_{\text{loop}}| = 2 \times \frac{\mu_0 I}{2R}
$$

$$
2 \times 4\pi \times 10^{-7} \times 8
$$

$$
= \frac{2 \times 4\pi \times 10^{-7} \times 8}{2 \times 0.02} = 16 \pi \times 10^{-5} \text{ T}.
$$

21. Potentials are indicated in figure

 $\frac{2}{10}$ $\frac{5}{5}$ 5 5 10 5 5 ar Roag OKota (Raj. $\textsf{Corporate Office}: \textsf{CG Tower}, \textsf{A-46 & 52}, \textsf{IPA}, \textsf{Near City Mall, Jhalawar R⊝B, \textsf{POA} (Raj.)-$24005 | \textsf{O} (Raj.)$ $\frac{5}{2}$ $\frac{+}{2}$ $\frac{1}{2}$ <u>lesonance</u> **Website :** www.resonance.ac.in **| E-mail :** contact@resonance.ac.in -15 Educating for better tomorrow **Toll Free :** ¹⁸⁰⁰ ²⁰⁰ ²²⁴⁴ [|] ¹⁸⁰⁰ ²⁵⁸ 5555| **CIN:** U80302RJ2007PTC024029 **PAGE NO.- ⁵** 0 \uparrow \uparrow PAGE NO.- 5 5 5 -5 5 15 assume5

5

Current in 2 $\Omega = \frac{10 - (-5)}{2} = \frac{15}{2} = 7.5$ A, **leftwards** Current in 2 $\Omega = \frac{18 \times 60}{2} = \frac{18}{2} = 7.5$ A, leftwa
Current in 30 $\Omega = \frac{10 - (-15)}{30} = \frac{25}{30} = \frac{5}{6}$ A, dow 5 **A, downwards** 2 1 \sim $\frac{i_1}{i_2} = 9$

22. Let the junction located at the center of rectangular portion of circuit be at zero potential .Then potentials of many other points can be shown as in figure . Now current can be written in every branch satisfying KCL. on located at the center of rectangular
oints can be shown as in figure . Now
 $\frac{5-(-5)}{5}$ = 2Ω
Ans.

$$
Reading of A1 = 0
$$
 Ans
8. reading A₂ = 5 A Ans.

^q² ³ ¹ ^q¹ ^ñ 3q² ⁺ 20q³ ⁼ ⁰(i) q_3 q_1 q_1 q_2 The distribution of charge is shown in figure $\frac{q_2}{5} + \frac{q_3}{0.75} + \frac{q_1}{15} = 0$ 5^{6} 0.75 0.75 15 $q_1 - 3q_2 + 20q_3$
 $(q_2 + q_3)$ q \Rightarrow $-3q_2 + 20q_3 = 0$
 $\frac{q_2 + q_3}{q_2 + q_3} - \frac{q_3}{q_3 + q_1 - q_3} - \frac{q_3}{q_3} = 0$ ……….(i) \overline{a} $\frac{3}{2}$ - $\frac{q_3}{1}$ q_3 q_1 – $q_1 - q_3$ q_3 q_3 \qquad $-\left(\frac{q_2+q_3}{15}\right)-\frac{q_3}{0.75}+ \frac{q_1-q_3}{5}-\frac{q_3}{0.75}=0$

⇒ $3q_1-q_2-44q_3=0$ (ii) $\frac{q_3}{0.75} = 0$ 15 / 0.7 0.75 5 0.75 $-44q_3 = 0$
 $-\left(\frac{q_2+q_3}{q_2+q_3}\right) - \frac{q_3}{q_3}$ $-q_2 - 44q_3 = 0$ \Rightarrow $3q_1 - q_2 - 44q_3 = 0$
 $23 - \frac{q_2}{q_2} - \left(\frac{q_2 + q_3}{q_2}\right) - \frac{q_2}{q_2} = 0$ \overline{a} \overline{a} $q_2 + q_3$ a q_2 q_2 \sim $\frac{12}{5} = 0$ $-$ 5 (15 15 / 5 $345 = 7q_2 + q_3$(iii) From eq.(i), (ii), (iii)
 19×345 13 ¹³ ³⁴⁵ 345

$$
q_1 = \frac{19 \times 345}{92}
$$
, $q_2 = \frac{13 \times 345}{92}$, $q_3 = \frac{345}{92}$

Potential difference between A and B = $\frac{q_3}{0.75}$ = 5V .**..Ans.**

24. Given circuit can be simplified as dotted part can be replaced as

23.

$$
\varepsilon_{eq} = \frac{\frac{6}{3} + \frac{0}{6}}{\frac{1}{3} + \frac{1}{6}} = 4V
$$

$$
\frac{1}{r_{eq}} = \frac{1}{3} + \frac{1}{6} \implies r_{eq} = 2\Omega
$$

then current
$$
I = \frac{10 - 4}{2 + R} = \frac{6}{2 + R}
$$

Power in R,
$$
P = \left(\frac{6}{2 + R}\right)^2 R = \frac{36R}{(2 + R)^2},
$$

for P to be maximum $\frac{dP}{dR} = 0$
on solving $R = 2\Omega$

 \overrightarrow{B}_{2}

 $\sum_{n=1}^{\infty} I_n$

 $\sqrt{\overrightarrow{\text{B}}_{1}}$

$$
25.
$$

 $I_1 \odot$

 \bar{r}

 r_2 d ℓ / 1
The force on current elen
 \Rightarrow F_{net} = 0 The force on current elements 1 and 2 is equal in magnitude and opposite in direction \Rightarrow

26. B at end =
$$
\frac{1}{2}
$$
 B at interior = $\frac{1}{2}$ B
\n
$$
IdL\left(\frac{B}{2}\right) = 2T \sin d\theta
$$
\n
$$
dL = R(2d\theta)
$$
\nI R.2d θ $\frac{B}{2}$ = 2T d θ \n
$$
T = \frac{BIR}{2}
$$

 $\Omega(R_3)$ $\overline{0}$ $0V$ $\overline{0}$ $\begin{array}{c}\n\begin{array}{ccc}\n & 5V & \\
\hline\n\end{array} & \text{WWW} \\
5V & 1\Omega(R_1)\n\end{array}$

Potential of different points are shown.
(i)

- (i) current in R_1 $_1 = \frac{1}{R_1} = \frac{1}{2}$ V 5-0 nR_1
= $\frac{5-0}{1}$ A = 5A from left to right.
- (ii) current in R_3

$$
I_3 = \frac{\Delta V}{R_3} = \frac{30}{1}
$$
 A = 30 A from lower to higher.

(iii) For current in R₂
using KCL

$$
\begin{aligned}\n&\text{using KCL} \\
&\frac{10 - x}{2} + \frac{0 - x}{2} + \frac{0 - x}{2} + \frac{-20 - x}{1} = 0 \\
&\Rightarrow \qquad \frac{10}{2} - 20 = \frac{3x}{2} + x \Rightarrow \quad x = -6V \\
&\therefore \qquad I_2 = \frac{20 - 6}{1} \text{ A = 14 A.}\n\end{aligned}
$$

30. $E < 10^6$

$$
^{6} \qquad \Rightarrow \qquad \frac{10^{3}}{d} < 10^{6}
$$
\n
$$
^{3} \qquad \qquad \Rightarrow \qquad \frac{10^{3}}{d} < 10^{6}
$$

d
\nd > 10⁻³ m
$$
\Rightarrow
$$
 C = $\frac{k\varepsilon_0 A}{d}$

$$
d = \frac{K \epsilon_0 A}{C} > 10^{-3}
$$

$$
A > \frac{10^{-3} \times C}{k \epsilon_0} \implies A > \frac{10^{-3} \times 50 \times 10^{-12}}{(6\pi) \times (\frac{1}{2} \times 10^{-9})} = 300 \text{ mm}^2
$$

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 <u>(6π) x | — x10⁻⁹ |</u>
ate Office³⁶06 Tower, A-46 & 5

31. Applying Energy conservation, initially kinetic energy = 0 Applying Energy conservation, initially kinetic energy = 0
gravitational P.E. = 0 (say) & Magnetic P.E. = µB \overline{a} gravitational P.E. = 0 (say) & Magnetic P.E. = μ B

 \overline{a}

where, μ = magnetic moment of the loop = i. $\sqrt{3}$ ล่ 4 $\overline{3}$ a 2 $\big)$

Finally when the loop becomes horizontal, Kinetic energy = 0

gravitational P.E.=mg $\left(\frac{a}{\sqrt{a}}\right)$ (beca ĺ $3/$ ^{occause} $a \mid$ (because mg acts on the centre of mass) magnetic P.E. = 0

 \backslash

magnetic P.E. = 0
\n⇒
$$
0 + 0 + \mu B = 0 + \frac{mg}{\sqrt{3}} + 0
$$
 ⇒ $B = \frac{mg}{\sqrt{3}} \frac{4mg}{\mu} = \frac{4mg}{3ia}$

using values, $B = 400 \text{ mT}$

32. Since $M \parallel^r$ to B torque zero. $\dddot{\cdot}$

- **33.** at C direction must be along \hat{k} direction.
- **34.** The emf is the difference between emf across straight segment OA and OC.

$$
36. \qquad V_p = x
$$

 $V_p = x$
 $\frac{3-x}{1} = \frac{x-4}{2} + \frac{x+4}{6}$ $\frac{x-4}{2} + \frac{x+10}{6}$ $x + 10$ **Solve** $\frac{1}{1} = \frac{1}{2} + \frac{1}{6}$
Solve
q = 2 × 4 = 8µc

38. The current through the galvanometer is $\sim \frac{1}{1000}$ of total $\frac{1}{100}$ of total current, the S << G.

39. Potential difference across galvanometer = Potential difference across S. \Rightarrow i_g. G = (I - i_g). S i_g . G = $(I - i_g)$. S \Rightarrow i_g . G = (I – i_g) . S
10 × 10^{–3} · 10 = (1 – 10 × 10^{–3}) · S 10^{-1}

 \Rightarrow

$$
\text{S} \qquad \Rightarrow \qquad \text{R}_{\text{S}} = \frac{10^{-1}}{1 - 10^{-2}} = \frac{10}{99} \,\Omega
$$

-
-

42. Finally the charge on either capacitor is
$$
Q_0/2
$$
. Hence he
\n
$$
= \frac{Q_0^2}{2C} - \frac{(Q_0/2)^2}{2C} - \frac{(Q_0/2)^2}{2C} = \frac{Q_0^2 b}{4S \epsilon_0}
$$

43. (A)At constant charge, the electric field within the capacitor remains same when plate separation is changed.

The electric field in capacitor is $E = \frac{1}{d}$. Hence V
_ . Hence at constant potential difference the electric field decreases with increase in d.

- (B) $U = \frac{1}{2} \frac{Q^2}{C}$. Hence at θ 2 C \cdots $1 Q^2$ Hence at constant charge U increases with decrease in C.
- U = $\frac{1}{2}$ CV². Hence at constant potential difference U decreases with decrease in C.
- (C) Capacitance increases on insertion of dielectric.
- (D) As a result of insertion of dielectric the capacitance increases
- $U = \frac{1}{2} \frac{Q^2}{C}$. Hence at θ 2 C $1 \, \mathsf{Q}^2$. . Hence at constant charge U decreases with increase in C.
- $U = \frac{1}{2}CV^2$. Hence at constant potential difference U increases with increase in C.
- **44.** The state of key K₂ has no effect on current through R_1 and R_2 as well has no effect on charge in the capacitor. Also position of key K₁ has no effect on potential difference between points A and B, that is $V_A-V_B = 10$ volts under all conditions. Hence charge on capacitor under all cases is 10µC.

Assume the potential at point P to be zero,

When Key K₁ is in position C: $V_A = 16$ Volt and $V_B = 6$ volts. Hence current in both R₁ and R₂ will flow downwards.
When Key K₁ is in position D: $V_A = 2$ Volt and V_B = – 8 volts. Hence current through R₁ will downwards.

When Key K₁ is in position D: $V_A = 2$ Volt and $V_B = -8$ volts. Hence current through R₁ will flow downwards and through $R₂$ will flow upwards.

